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ABSTRACT

A general theory for nonlinear implicit one-step schemes for solving initial value problems for

ordinary differential equations is presented in this paper. The general expansion of 'symmetric'

implicit one-step schemes having second-order is derived and stability and convergence are studied.

As examples, some geometric schemes are given.

Based on previous work of the first author on a Generalitation of Means, a fourth-order

nonlinear implicit one-step scheme (GMS) is presented for solving equations with steep gradients.

Also, a hybrid method based on the GMS and a fourth-order linear scheme is discussed. Some

* numerical results are given.
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1. Introduction

Many classical methods for solving initial value problems for ordinary differential equations are

based on piecewise polynomial interpolation. If the solution of the problem possesses a very steep

gradient, these schemes produce poor results. In particular, if a singularity occurs, it is often

inappropriate to attempt to represent the solution in the neighborhood of the singularity by a

polynomial. In this paper, we consider a class of nonlinear implicit one-step schemes that may be

more appropriate for such problems.

A general theory for nonlinear implicit one-step schemes is developed in section 2. Conditions

for consistency, stability, and convergence are obtained. Each consistent symmetric scheme is at

least second-order, and the condition that it must satisfy to be fourth-order is given. A class of

symmetric and homogeneous schemes which are generalizations of tfe well-known trapezoidal rule is

obtained.

The trapezoidal rule is exact for second-degree polynomials. In terms of geometry, a second-

degree polynomial is a conic. As examples of nonlinear symmetric implicit schemes, we develop

several geometric schemes based upon "circles", "ellipses", "parabolae", and "hyperbolae" in section

3.

On the other hand, in terms of Means, the trapezoidal rule is the Arithmetic Mean of the first

derivative of the solution at two neighboring grid points. In section 4, based on the Generalization of

Means [9], a fourth-order nonlinear implicit one-step scheme (GMS) is presented for solving problems

'- with steep gradients.

In section 5, we discuss some practical considerations including the use of hybrid methods based

-. :upon the GMS and more traditional schemes.

. . . .. . . -.. -... -.., -. - -" -
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In this paper, the theory of nonlinear implicit one-step schemes is restricted to scalar equations.

However, we have used these schemes successfully to solve systems of equations. The application of

these schemes to systems is discussed briefly in section 8.

Numerical Results for seven test problems, some of which contain systems of equations, are

given in the last section. Two of the examples use an imbedding technique to apply the GMS to the

solution of two-point boundary value problems.

It
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*, 2. A general theory for nonlinear Implicit one-step schemes

Consider the initial value problem (I.V.P.)

y'-f(x,y), y(a)-y (a<x..b) (1)

where f(z,y) is continuous in z and Lipachitz continuous in V in the relion

a<xb, - o < y < oo, a and b finite.

We investigate the following general nonlinear implicit one-step scheme

Yn+ " Yn + h S(fn,fn+l), (2)

where

h x +1 -x., fn = Rfxnly), f.+1 - x.+,,Y.+,

The the local truncation error for scheme (2) is

L(f) - y(xn+1 ) - Y(xn) - hS(f(Xn (Xn)),f(x 1 +,Y(xn+l))), (3)

where y(x) is the solution of (1).

Definition 1: [5] The scheme (2) is said to have order p if p is the largest integer for which
L(f) - O(hP,).

Definition 2: The scheme (2) is said to be consistent with the I.V.P.(I) if L(f) - o(h).

We will use the notation f(t)f(t,y(t)) throughout this paper except where it may be confused.

For xn <K x <Xn+l, let t -(x -xn)/h. Since

Y(xn+1 ) - y(x) - h0 f(t) dt, p

(3) may be rewritten as

L(f)- h( f(t) dt - S( ,x (4)

By the Integral Mean Value Theorem, there exists a point between xn and xn+ 1 such that

jl f(t) dt - f(C,y(f)).
0

So "

4 p.



df* Furthermore, if r(t) - a-exists, then

I Aft) dt A fx) + f 't'(tXlt) dt
0

and

S(f(x,,),fRx,,+)) =S(fAx,)iRx,)) + f dS(fAx.),fAt)).

Hence, we have

Lemma 3: Let the function S(fjg) be continuous in its tuo variables f and g.Ten the

scheme (2) is consistent w~ith (1) if and only if

S(f,f) =f. (5)

Moreover, if both f and S have continuous firsat derivatives, then any scheme (2)

satisfying (5) has truncation error

L~f) -hf '(f~t)(1-t) - S'(rAx,,y(x 5)),fAt)))dt, (6)
0

where f'(t) -t" S'(g9f0t)) -t

The proof of the following theorem is similar to the one given in 121 for general explicit one-step

methods.

Theorem 4: Let

fi) the function S(fjg) be continuous jointly as a function of its tao arguments in the

region f# > 0, and

(ii) S(f(z,y),g(x,y)) satisfy the Lipschitz condition

IS(fAx'y),f(Z'w)) - S(f(x'y*),fAZ'w)) K M ( I - Y + 1w - w*1)
for all points in the domain defined by

a <x,z .b, -oo <y,y,w,w* < +00

under the constraints tAxjy)fz,w) .-O and fgx,y*)fz,w*) .O.

Thsen the scheme (2) is convergent if and only if it is consistent.

In order to get a second-order scheme, note that



I' f(t) dt -Afx) + '(xn) + I*j f"(t)(1.tp dt,
00

I' dS(fAx ).A~t)) =h ~j~~,(Ax)) 1..1 + jI S"(fAx,),fAt)) (1-t)dt.
0 &

Therefore,

Theorem 5: If Sjf e C1, then the scheme (2) has a second-order rate of convergence if

* and only if

Syf,f) =f, -Sgf (7)

Moreover, if the second derivatives of S and f are continuous, then

L(f) - ff(Ithr')2lt)"A,,t) dt

* where S(f#z,),f(t)) - S(f(z.,y(z.)),f(t,y(t))).

* Corollary B: Keeping S(fjf)af, the second condition of (7) is equivalent to one of the

following four conditions

aS(gsf) I 1 sIgu..t

aS~ g,f)g a s( f)Ggf) I
= #1 gmt and - I. U

Suppose now S and f both belong to 02. Ex'nanding f about the point xn+ 1/2 -x~n~)2

we have

Aft) dt h + Of'x)+(h4). (8)
0 a1 4'(n+1/2 .-

On the other hand,

S dAxnx ) S(f x+ 112),f4xn+ 112)) + nx- n+1/2) +

* 8Sf(Cf~u)) 2S(f(f),fquI)) (x _x~~ 2)2

at (xn+l-xn+1i 2) +2

1xnl-n+ u,2)(Xxnx+ 1/2) + ,2  I~lf 2

a f c all7
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For symmetric schemes, S(f,g)-S(gf) and, consequently,

S(A Ox.2 a2S(f(f),fltj))+
n( x).f,(xn+ 1)) - f(xn+112) + g--{ +

892s~,(q ) b)2S(f(f),f(V))
___ 

O 2 0(h4).-t, 2 tel C' ..

But

__ ( q)--a _ _s ),4(9))
mUat -  MrO arVo

a2s(q(,)t()) aS(_(O r( f__())

af ai Mr,)O

Hence, from Corollary 6
h2 ~ )  sr~) + O(h4). ()

S(f(xn),f(x.+l)) - A(xn+ 1 1 2 ) + H f" + 2 Sf =3 (9).,

Ifgmfqz 4 11 2 )

Substituting (9) and (8) into (4), we obtain the following theorem.

Theorem 7: If S and f C C, the" each symmetric consistent scheme

Sf,f) - f, S(fg) - S(g,f) (10)

has a second-order rate of convergence, at Least. Moreover, if the fourth derivatives of f

and S are continuous, then
3~)_ a { ,,+ f,2[2gg)  #2S(fg)o~~

hy 31 ]l-.+1/) )+ 0(h). (11)

It should be noted that symmetry is a sufficient but not necessary condition for a scheme to be

second-order. For example, the scheme

n + h (fn+fn+,)/2 + fn 'n+!
I+rn(rn+r.+,)/2

is second-order but not symmetric.

Corollary 8: A symmetric scheme is fourth-order if

o V

. . ..
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{ 2S(f,g) a 2S(f,g)

f afag }Il',g-x" 2) "f ,X3. /2'

Now we consider a general representation of consistent symmetric schemes (2). Let

and assume S(f,g) can be expanded in terms of its two variables f and g.

S(f,g) - S(Mq) = 0 k,j Nk CO.
k,j

Using conditions (10), each consistent symmetric implicit one-step scheme (2) has the expansion

S(f,g) = + a f.g2k+2 (!)J, (13)
2 2kj(7)

where &,kj are real constants to be chosen.

Furthermore, it is often useful to restrict the class of schemes to be homogeneous in the sense

that

S(cf, cg) = cS(fg) (14)

for any constant c. For these schemes, we obtain the following conclusion:

Theorem 9: Assume S can be expanded in terms of its two variables f and g. Then each

homogeneous consistent symmetric nonlinear implicit one-step scheme (2) has the

following expansion

f kiffg g)2k+2
S(f,g) {1- h t k +. (15)

'Zo
where ok are real constants to be determined.

Observe that the trapezoidal rule is the principal part of each homogeneous consistent symmetric

nonlinear implicit one-step scheme (2). Hence, in this sense, these nonlinear schemes are an extension

of the trapezoidal rule.

Setting ak = 0 for all k > 0, we get an 'extended trapezoidal rule' with one extra term:

4 S(f'g) - -2(16)
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From (11),

L(f; a) = - f" - 3 a) + O(hS). (17)

In terms of Means, the scheme (16) represents a linear combination between the Arithmetic

Mean and the Harmonic Mean of f and g:

f+g 2fgs(f,g) f 1-Y + a r+g"

For example, if a = 1, the above scheme represents the Harmonic Mean between f and g.

Finally, we discuss the stability of the nonlinear implicit one-step scheme (2).

Let f(x,y) = )y and Yn+ 1 = PYn' where p is the "growth factor" in the step. Assuming that the

scheme (2) is homogeneous in the sense of (14), we get

p I1 + hX S(1, p). (18)

Definition 10: A nonlinear implicit one-step scheme (2) is said to be A-stable if all the
roots of its characteristic equation (18) satisfy IpI < 1 for any Re h < 0.

For nonlinear implicit one-step schemes, (18) may have more than one root for a fixed hX, and it

may be possible to choose which root the scheme follows, unlike the case for multistep methods.

Hence, the following definition may be of some practical value.

Definition 11: A nonlinear implicit one-step scheme (2) is said to be conditionally A-stable
d if at least one root of its characteristic equation (18) satisfies Ipl < I for any Re hX < 0.

Theorem 12: For each real symmetric homogeneous scheme S(fg), the characteristic

equation (18) transforms the unit circle of the p plane to the imaginary axis of the X

plane.

Proof: Since S(f,f) - S(f,f) - S(f,f), S(f,f) is real for any f. Hence, for p =e

h e I e i/2 , i#/2 ) is purely complex.

A necessary requirement for a homogeneous scheme to be A-stable is that it is stable at infinity.

*,.
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Theorem 13: A necessary condition for a homogeneous nonlinear implicit one-step

scheme (2) to be A-stable is tht all roots of

S(1,p)i 0 (19)

satisfy IJp _ 1. To be conditionally A-stable, at least one root of the above equation must

satisfy IJI < 1.

As an example, consider the stability of scheme (16) with characteristic equation

+}P (20)

ifIp = 1, then p= e9, 0_<8<2r, and

-=i tan #/2.
p+1

Hence, (20) may be rewritten as

2i tan 0/2

liX= I +a [ta-d 0/2]2'

It follows that, if IpI 1, then hX is purely complex and lies in the interval (-i "1r 2 , i&"1/ 2 ) for

a >0. For a.<0, hX may assume any value on the imaginary axis. Also note that, for scheme (16),

equation (19) becomes

p-fi = 12
p+l

That both roots of S(1,p) are on the unit circle for a<0 and that one is inside and the other is

outside the unit circle for a >0 follows from the well-known result

Lemma 14: The one-to-one mapping in the complcz field

W(z)-f- (21)

maps the domains Izl<1, Izi-1, and IzI>1 onto ReW<O, ReW-O, and ReW>O,

respectively.

The characteristic equation (20) can be rewritten as

aW2(p) + 2W(p) - 1 - 0. (22)

0W(p
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where W is defined in (21).

Since W=0 is not a root of equation (22), any root W satisfies h) {W"' + (-a)W) - 2. If a.0

and ReXh < 0, then ReW<0, whence, by Lemma 14, any root of the characteristic equation (20) for

the scheme (16) satisfies Ip1 < 1.

Also note that, if o70, then the roots of quadratic equation (22) satisfy WIW2 - - O" . Hence,

if a >0, then Arg(W,) + Arg(V 2) - 7r and, consequently, either ReWjmReW2 -- 0 or ReW1 and

ReW2 are opposite signs. Therefore, by Lemma 14, either both roots of the characteristic equation

(20) for the scheme (16) satisfy p-1 or one is larger than 1 in magnitude and the other is smaller.

We may simply choose the value of Yn+1 in scheme (2) with (16) such that 11Y,II < I1Y.11. Thus,

we have proven

Theorem 1: Scheme (16) is A-stable for a 0 and conditionally A-stable for a > 0.

For the more general scheme (15) with a finite terms number of terms, the corresponding

characteristic equation is
ak (W(p)) 2 k+ 2  W(p) - 1 0. (23)

By the relationship between coefficients and roots,

,g42
\k' w i 2 (24)

where WVk (k=l...,2n+2) are roots of (23). Hence, if Re(hX) < 0, then ReWk<O for at least one

root \k of (23). Therefore,

Theorem 16: Each scheme (15) with a finite number of terms is conditionally A-stable.

Remark: Theorem 16 is valid even if the coefficients ok of the scheme (15) are complex.

I7

I
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3. Derivation of some geometric schemes

The trapezoidal rule can be viewed as the Arithmetic Mean of fn and f,+, since

S(fn.fn+) fn + f+,)"

Let fn = tan an, fn+1 tan *n+1 , (Y(xn+ 1)-y(xn))/h - tan &n1t/2. The trapezoidal rule

satisfies

tan a -+/2 = tan o + tan an+i). (25)

It is easy to see that the scheme (25) is poor if the angle a n or an+ 1 is close to 900. In this case,

it is natural to replace 425) by the Arithmetic Mean of the angles a n and a
1 +

0 n+l/2 - Yo n + n+(2)

The corresponding function S(fn,fn+ 1 ) is
S(fnf+ 1 ) -= {(i+fn2 }i+fn 1

2 )}1/2 + fnfn+l " 1 (27)

fn + fn+ 1

From anal.-tic geometry, the curve which satisfies (26) everywhere is a circle. So we call (27) a

Circle Scheme. The Circle Scheme (27) is not linear with respect to the solution y(x) or f, but (26) is

linear with respect to the angles. Hence, if the angles are not too large, the Circle Scheme is close to r

being linear. In fact, if we rotate the coordinate system by an angle a = an+l/2, then the Circle

Scheme coincides with the trapezoidal rule in the new coordinates.

Introducing a parameter a into (27) leads to a class of Elliptic Schemes:
-(a2 +fn2 )(a2+f+i 2 ))1/ 2 + fnfn+ I " a2

E fn'f+ n~a n+1 (28)

n + fn+
Note

aE(f,g) (a 2+g 2 )1/2 E aE(fg) (a 2+f 2 )1/ 2 E

8f (a 2+f 2 }1/ 2(f+g)' ag (a2+g2 )'1/(f+g) '
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B2 E E E- 2f B2 E BE E
2- 2 -- -- 2

8f af a'+f Bg 1f

-1Ef E f
r- (a2+f2 ) if(a 2+f2)(

A straightforward computation leads to the following conclusion.

Theorem 17: E(f.,f ,,a) in (28) has the following properties:

(fn+f n+)E ,> 0 with '-' iff fn+f,.+ - 0.

BE 8E 8E

> o, u +, > o, (f,,+f,) o.

Min(fn,fn+, ) < E(fn,fn+ ;a) < Max(fn,f.+ ).

rr +)1 I < E(ff.+1 ;a) < +r,,+l if a > (ffn+l)l2.2f 2
fnr+l < (f.+;. f (r+)1/2 if a < (fnfn+1)1l2 .

fn+fn+ !""
As a function of a, E ha. lynv one fixed pit a = (fj l/ for f >

Hence, the Elliplic Scheme (28) represents a Mean which lies between the Arithmetic Mean and

the Harmonic Mean.

Similarly, we can derive two other geometric schemes: the Parabolic Scheme and the Hyperbolic

Scheme. An easy way to derive the Parabolic Scheme is to apply the trapezoidal rule in a coordinate

system rotated by an angle a==arctan(a) from the original coordinate system:

fn+fn+! fnfn+
+ a

I

nP(fn.fn+:a) -= 2 n(29)
2 a +[(fn+f,+,)/2]

-'i Substituting hyperbolic functions into the formulas (25),(26) instead of trigonometric functions, we

get the Hyperbolic Scheme

a2+fnfn+ 1  " ((a
2 fn2 )(a2 f n  

1
2 ))1/ 2

H(fn,fn+ !;a ) == n n+ (30)
+ n+,

:'



14

Since schemes (28),(29),(30) are all symmetric, by Theorem 7, we have

Theorem 18: The Elliptic, Parabolic, and Hyperbolic Schemes (28),(29),(30) are second-

order. The local truncation error for the Elliptic and Parabolic Schemes ie
- , 3  31T

h 091 2 - + 0(h 5 )," .7 .2'" a-+f2)1 "x M X + h 2 h}

and for Hyperbolic Scheme (30)

h0 3ff'2
- {r' -a + _ + h + 0(h).

Remark: 1. In practice, the Parabolic Scheme has an advantage over the Elliptic and Hyperbolic

Schemes in that it does not require square roots. Also, it is valid for all fn,fn+l including fn+f.+,-O.

2. The parameter a can be chosen so that one of the schemes (29) or (30) is fourth-order.

3. These geometric schemes are not homogeneous unless we multiply the parameter a, as well as fn

and f+,, by the constant c.

0,

* 2
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4. Generalized Mean Scheme (GMS)

In addition to the above Geometric Means, another useful Mean for solving O.D.E.s is the

Generalized Mean developed by Jiachang Sun (9].

Definition 19: For a given positive sequence a - (a1 ...,an) on a real plane (r,t), a
Generalized Mean of the sequence (a) S(ar,...,an;r,t) is defined by

(n-i)! F(t+1)
S(a! .... an;r.t) - ( [at nlr yn-+t)l/rt, (31)"'-".r (t+n)

where . is the (n-I)-th divided difference of the function f(y) at the points
Yl.....yn"

Now, we use the Generalized Mean (GM) in (31) to construct the Generalized Mean Scheme

(GMS), a nonlinear implicit scheme. In this paper we only consider the one-step case. From (31),

the GM between f. and fn+l is
f + l+t) f r(l+t)

S(fnfn+I;rt)- + ftt (32)

where r,t are real. Substituting (32) into the local truncation error formula (11), we get

Theorem 20: Let f() have constant sign for z, z Zn z , then each scheme (32)

with two real parameters (r,t) is second-order at least. Moreover,

L(f;Or) - - h f -[3. h+0(h), where h x -xn. (33)

To simplify the study of this scheme, we consider the restriction rt- on the parameters r,t.

The scheme (32) reduces to

r n+ r fnl+ r

S(ffTr , (34)n _rfn+!r - fnr,

where

S(fn.fr,;O) = fn+i - fn Log (fn/fn+l) (35)Log , s",n+l;-) I (34'Lo (n+l/fn ) ' fn+l "! on r

and the local truncation error (33) becomes

L(f;r) T- - .r{ f"- (l-r) + O(h'). (36)

S
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It is obvious that for r= 0 the scheme (35) is A-stable in the sense of the previous definition,

because this scheme is exact for any exponential function. In general, the characteristic equation (18)

for (34) is

Xhr plr 1
l+r pr. I

or

+r 1 r (37)

Note that
- - p +p p

Ir w2(1+r). P , lP0 rlp2 + +r + , r 1
l+r. -1 (pl+r P )(l+r. 1 )

Let p - Re'l . Then the real part of the numerator is

R2 l + r) - (Rl+2r.R)cos# - (R2+r-Rr)cosrO - I

which, for r>0 and R > 1, is greater than or equal to

R2(l+r) - (RI+2r-R) - (R2 +r-Rr)- 1 - (R-1 XRr-1XRi+r-1) > 0,

whence ReXh > 0 in (37). Consequently, if r>0, then the scheme (34) is A-stable.

For r<0, r7-1, rewrite (37) as

(I.-r )pr -- ,I+ pr- +(I + l-rxh) - O. (38)

First, assume r is a rational number: r = - m/n, where m and n are two positive integers.

Substituting Z-p i / n into (38) and multiplying by Zm, we get

Zn+ml - (l- r\h)Zn - (I + L rxh)Zm + 1 - 0.

Since the product of roots of the above equation equals (-1)m+n . if any root is greater than 1 in

magnitude, then at least one root is less than 1 in magnitude. By continuity, this holds for all real

r<0, including r---. Therefore, if r<O, then the scheme (34), (35) is conditionally A-stable.

In summary, we have proven

A
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Theorem 21: The scheme (34),(35) is A-.table for each parameter r _ 0 and iJ

conditionally A-stable for r < 0.

Given a fixed r, scheme (34) is exact for equations y' - f(x,y(x)) - Ci(x - Co)l/r, where Co and

C, are constants, just as the trapezoidal rule is exact when f is a linear function of x. This explains

why the GMS may lead to better results near a singularity, provided we can find a good

approximation to r.

Note that we can interpret the GMS as an Intergrand Approximation Method (Jackson, [4]).

That is, the discrete numerical solution (Y.) can be extended to a continuous approxmation Y(x) to

the solution y(x) of (1) satisfying Y(xn) = y(xn) by

Y(x) Y, + f PiAf., Y(.)); r](s) ds,
£

where. for xE [nx.x+l],

Pfg;rj(s) = (g(xn) r ±l + gfx n+ )r ?I+ /r

h h
P[g;r] is a nonlinear interpolation operator computed by irst raising g to the power r, then

performing linear interpolation, and finally back transforming by raising the interpolant to the power

I/r. Of course, if r=1, P reduces to a linear interpolation operator.

A similar technique can be employed to enrich a piecewise linear space to solve singular two-

point boundary value problems, using either the finite element method or the finite difference

method. (See, Jiachang Sun 110], [11]).

In order to obtain a more accurate scheme, we set

f f"
r- -- I h. (39)

f1
2 

xm x,+ vy

From (36), the scheme (34) is fourth-order accurate for this value of r.

It is worth mentioning that the function in (39) S

J
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f f",
F(f,r' ) - -s (40)

often remains bounded even when f and its derivatives are unbounded. For instance, F is a constant

for any power function f-CI(x - C0 )". And, what is more interesting, F is identically equal to 1 for

any exponential function, f-C Exp(C(x - Co)).

However, the F is not easy to compute, as an evaluation of f" is required. Some high-order

schemes based on non-polynomial interpolation developed by Lambert [6] and Lambert and Shaw [61

have not been used widely, possibly because they too require the evaluation of higher derivatives of

f. Furthermore, it is not clear that these methods are applicable to systems of equation.

Fortunately, we can avoid computing r' in (39) by setting

1 n+ 1 f
r (- ) f,(41)

fn+I 1 fn

With this approximation, the scheme (34) retains its fourth-order rate of convergence. Also, it

retains exact for f(x,y(x)) - C1(x - C0) Il r.

Computing experiments show that there is only a slight difference in accuracy between using

(39) and (41) in the scheme (34); sometimes one is a little more accurate, and sometimes the other.

But (41) saves computing time, and f" is not required.

An alternative derivation of the GMS is obtained by taking

Ff-f 1 /r (r 0 ), Ff -fr, G(u)-f - Ff d. (42)

With this notation, (34) may be written as
G(F-'fn~) G(F-'Ifn)3

S(fn'fn+l ) -- 'fn+,F-'fn] G(y) me FIfn FI 43

n+ F fn

This formulation can be generalized by considering other functions F. Using Theorem 7 and the



local truncation error formula (11), we have

Theorem 22: For any one-to-one map F, (49) defines a second-order one-step implicit

scheme with local truncation error

d2 F-If
1 (f ) I_m,+1/2 + 0(h5)- (44)

This formulation unifies most of schemes described in this and the previous section. Some

examples follow.

1. Ff - f leads to the trapezoidal rule.

2. Ff - er leads to the scheme (35). (It is independent of the parameter r).

af
3. Ff - - leads to the Elliptic Scheme (28).

7~f2)/ 2

af
4. Ff - - leads to the Hyperbolic Scheme (30).

F(1+f-2)?/2

Many other schemes can be derived using this formulation.

V
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5. Some computational considerations for the GMS

First, we consider how to solve the implicit equation (2). For an initial value system (1) with

steep gradients, functional iteration may be employed:

y(k) n+1 Yn + h S( fn' fn+ (k-1) r(k 'l)  (45)

where

I f (k-) fn

r(k' l)mf - ( n+ n) (46)
h fn+l (k-I )  f9n

For stiff problems, a Newton iteration should be used instead.

As a simple stopping criterion for the iteration, we use

Iy(k) n+1 ylk-1l n+1 II< (Y9

where t is a parameter to be specified.

The starting value, Y(O)n+1, is computed by a conventional explicit method. For simplicity, we

use the Euler Method for the numerical tests in the last section. Of course, a more accurate

predictor may be used.

The rate of convergence of the iteration (45) depends upon the value of the "contraction factor"
dS (s af 10

h -= h - + h r ,(47)

where, for the GMS,

as s r ff++Lo - grfLogf, r',, -.fLogfsgr" 5" (1 +r) -"r {' fr . fnr  sr . n

If f is continuous, then,

r n ' as h->O, f->fn,

and

as_> fn r ,+r I I+r I
- ( I+r) + rT +r - (fgLogf + Fr ))-0.

Also, from Theorem 5, aS/Of -- > 1/2 as h -- > 0. Therefore, for sufficiently small h, iteration (45) is

.- .
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convergent and, moreover, its rate of convergence is close to that of the trapezoidal rule using the

same functional iteration procedure.

It is worth mentioning that the GMS is particularly well-suited to solving problems having steep

gradients, especially those problems for which f(x(x)) behaves like a piecewise power function of

x. In practice, it may be more efficient to use the OMS only on the sections of the problem having

steep gradients and a conventional scheme on the sections of the problem where f(x,y(x)) is well-

behaved. We consider two fourth-order hybrid schemes of this type. If jfnI.fe, then MixI uses the

cubic Hermite scheme (modified trapezoidal rule)

Yn+1 -- Y + h f + fn -h(ril - Vr+l). (48)
2

And MixIl uses the classical fourth-order Runge-Kutta scheme in place of (48). if fI>f ' then both

MixI and MixIl use

fn+" fn
S(fn.fn+) - , if rI.er

Log (fn+l/fn)

Log (fn/fn+l)
S(fnf n+l) , if Ir+ll.er,

and

r f + ( l / ) '. f nr fn+ln+'n" fn otherwise, (49)s(f.'f.+l) = 1-Ir (f+ 1/fn) F - 1

where f and er* are constants. In our numerical tests, we take f* - 2 and er* 0.01.
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6. Extension to Systems

So far, our discussion has been restricted to scalar equations. However, we have used nonlinear

implicit one-step schemes successfully to solve systems of equations; some numerical results are

presented in the last section.

For systems, we apply the scheme (2) to the individual components of the system. The

parameter r is a vector whose components elements are determined componentwise by formula (46),

where

, - k fx,y(x)) -f Nx N )
is a vector. Hence, the Jacobi matrix of fAx) is needed to be computed for finding the index vector r

to get a fourth order scheme. The advantage of (41) over (39) is more significant for systems than

for scalar equations.

The analysis of nonlinear schemes for systems of equations is an open problem that we will

consider in the future.

- ,

*q

Ut
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7. Numerical Tests

In this section, we present some numerical results. Throughout, y(x) denotes the solution of the

problem (1) and C(x-C)' is a piecewise approximation to function of y'(x), where p 1/r is the index

of the approximation. If p < 0, the approximate position of the singularity is

f
- + h (( n )r 1-I

n rn.+ 1
Throughout this section, we use the following abbreviations:

GMS - the scheme (34);
R-K -- the classical fourth-order Runge-Kutta scheme;
C-H - cubic Hermite scheme (48);
Mixi -- the hybrid scheme composed of GMS and C-H (49);
MixIl - the hybrid scheme composed of GMS and R-K;
L-S - the scheme proposed by Lambert and Shaw 16];
Error- Y - y(x) for the GMS;
Er(f) - the error in the first derivative Y'n - y'(x) for second-order equations.

A uniform mesh, h = Xn+ 1 - xn, is used throughout the section. The Fortran program was run

in double-precision, on a DEC-System 2000 computer at Yale. The iteration error y is taken to be

10"10.

Test 1.[6] y'=I +y 2, y(0) 1

with solution y(x) = tan(x + ;) which has a strong singularity at x .

Table 1. x = 0 (0.05) 0.75

x y GMS p L-S R-K
I ---------------------------

0.701 11.8814 111.8808 1 -1.975 0.7828 11.6813 11.6680

* I I ---------------- ------------------------
0.751 28.2383 128.2305 1 -1.992 0.7851 28.2378 27.6947

----------------I--------------------....................--

Remark: For the exact solution, p = -2, = - 0.7835.

.,,
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Test 2. 16] xy' -y + 5x2ey/sx, y(l) -0

with solution yix) -- 5xLog(2-x) which has a weak singularity at x -2.

Table 2. x 0 (0.05) 1.95

xl y GMS I p I L-S R-K
------------------- ---------------- ------------------------

1.901 21.8745 21.8753 I-1.055 2.001 I21.8748 21.8746
-------------------- ---------------- ------------------------

1.951 29.2084 29.2098 1 -0.997 2.001 I29.2099 29.2077
-----------I---------------- ------------------------

* Remark: For the exact solution. p=-. =2.

*Test 3. 181 (l-x)y' -y Logy, y(O) e0.

with solution y(x) - 2 /("l) which has an essential singularity at x -1.

Table 3. x =0 (0.05) 0.95

xl I y GMS I p IL-S R-K
------------------- ----------------- -----------------------

0.901 7.3891 7.3902 I-2.521 0.963 I7.3954 7.3846
------------------- ----------------- -----------------------

0.951 54.5982 54.8956 I-3.126 0.976 I57.1189 47.1138
------------- ----------------- -----------------------

Remark: For the exact solution. p -oo. =1

These results show that the GMS is more accurate than the classical fourth-order Runge-Kutta

scheme in Tests I and 3; the accuracy is about the same in Test 2. Also, the OMS is more accurate

than the scheme of Lambert and Show in Test 3; the accuracy is about the same in Tests 1 and 2.

However, the GMS doesn't, need f... which the L-S scheme requires.
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Test 4. (Artificial) A system of equations consisting of four components:

Y' -0.1 eY2/y 3 , Y(O) - .35

!Y - 2((y -O.1)(10Y3)3} i /2, Y2(O) - 0

Y3' - e2Y2 Log Y4, Y3 (0) - 0.1

-Y 2y 3y4' Y4(0 ) e° 2.

The solution is

yl(x) - 0.25(1-x)4 + 0.1, y2(x) - -Log(1-x),

Y3(x) 0.1(1.x) "2 , Y4(x) - eO.2/(-x).

Table 4 h = 0.05

x Yk(X) p GMS R-K C-H

0.9001 0.1000 1 3.01 0.77 1 0.1000 0.1000 0.1000
W1-------- I-------------I---------------
M(21 2.3026 1 -1.00 0.91 1 2.3025 2.1122 2.2580

I-- - --------------I-------------------------
(3) 10.0000 1 -3.00 0.97 1 9.9992 8.8429 9.6617

1I--------I ------------- I--------------------------
1(4) 7.3890 1 -0.25 0.96 1 7.3867 7.0125 7.1183

SI -------------- I-----------------------------
0.9501 0.1000 1-11.54 0.27 1 0.1000 0.0999 *

W1)---------I------------I
(2) 2.9957 1 -0.50 0.95 1 2.4771 3.5606 *

I------------------I---------------
(3) 40.0000 1 5.53 0.84 1 38.4948 40.0606 *

- -------------- I-----------------------------
(4)1 54.5982 1 -3.27 0.98 1 50.0038 32.9154 *

( h/2 = 0.025 ) 54.4607 46.0768 44.9161

•: The C-H scheme overflows on the lust point using (45).

Remark: On the last point x=0.95 the vector of first derivatives is equal to

(-0.16x10- 3, 2.1. 1.4x103 . 3.8x103 ).
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Test 5. A problem with an integrable singularity:

-I TOOo
1+x +)x~~()- +, -1

The solution is

y(x) - Sign(x. 1) Ix l

Table 5. Errors x = 0.1 (0.1) 1.0

t=-O.1 t=-0.3 t=-0.5 t=-0.7 I* t=-0.7 *
-- - - - - - - - - - - -- - - - - - - - - - - ----------

0.1 -0.214-5 -0.115-4 -0.60-5 -0.87-4 0.54-12
0.4 -0.237-4 -0.416-6 0.70-4 -0.19-3 -0.18-10
0.5 0.245-1 0.959-1 0.63+0 -0.74+1 0.29-08
0.6 0.431-1 0.150+0 0.87+0 -0.86+1 0.29-08
0.9 0.507-1 0.178+0 0.10+1 -0.10+2 0.40-08
1.0 0.533-1 0.187+0 0.11+1 -0.11+2 I* 0.42-08

Remark: the right column is the error for another problem

2-0+0}
y'-(l+tY(x-0.5) " , Y(Ol)=--i--T, - I <t<O,

the solution of which is:

y(x) - (0.5-x)+t/(l+t), for x < 1/2

y(x) - (x-0.5)1+t/(l+t), for x > 1/2

which has a turning point at x =

The GMS scheme may be used with invariant imbedding to solve linear two-point boundary

value problems with various singularity properties. For these problems, y" - is available directly

and may be used in the computation of the fourth-order GMS scheme using (41) to compute r.

Consider the two-point boundary value problem

y"(x) + p(x)y'(x) + q(x)y(x) , r(x) (50)

a0 y(O) + b0y'(0) -c ,  aly(l) + bly'(1) - c1.

S..7
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To solve this problem. we use the sweep method of Gelfand and Formin [I] (p.133). (See, also

Miller [7] or Scott [8].)

For b0 y 0,

(i) the Initial Value Problem for the Forward Sweep is

2 a0
u' -q - pu -u, 

u(O) --- ,
v' - r- (u + p), v(0) b0

(ii) and the Initial Value Problem for the Backward Sweep is
e,-bv(l)y' u y + v, y(1) ==

a1+bju(1)

For b0 - 0,

(i) the Initial Value Problem for the Forward Sweep is

b0
u' - + u(p+qu), u(O) - ,

a0
v' - u (r + q v), v(O)- 0

a0
(ii) and the Initial Value Problem for the Backward Sweep is

y(1) clu() - blv(1)uy' =y + v,y()=
alu(1) + b

Test 6. An unstable two point boundary value problem

y" - 16 5y' - 2700y + 4.95e, 5x = 0,

y'(0) - 0.015, Y(l) - O.O01e 16

with solution y(x) - 0.001 e'b .

S7
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Table 6. x = 0 (0.005) 1

x I NI I Yn I Error E(C-H) I fn I Er(f) Ef(C-H)
- I--------- - ------------ ....

0.000 2 I 9.752-4 -2.48-5 12.73-7 1.5-2 - -

----- ----------I------- ------- ----------------.
0.005 1 19 1 2.106-3 1 -1.08-5 1 1.29-7 1 3.2-2 1 1.6-4 1 -1.9-6

-- -- -- - I -- - - - -I -- - - -I - - --I - - - --I - - - -
0.500 27 1 1.808 1 -1.25-8 1-3.23-8 1 27.1 1 1.9-7 1 3.3-7

--------- ------- I ------- I ------ I ------- I ------
0.900 34 7.294+2 -3.48-11 1-1.31-5 1 1.1+4 1 -1.8-8 1 2.8-4

---------- ---------- I-------- I------- I--------I......--
0.950 1 35 1 1.544+3 1 -1.09-11 1-2.77-5 1 2.3+4 1 1.8-8 1 6.0-3

Remark: NI -- number of iterations with = 10"10 for the GS. r

Test 7. A linear singular perturbation problem with constant coefficients

Ly --- y" +y' +(I+-)y-f(x), in(0,1)

Y(o) - y(I) =

where A(x) - (l+t)a-b)x - ta -b,

as I + e(+),b 1 +e-1,

with true solution

y(x) -- "(I+( 'x)/' + ex - a + (ab)x.

p.
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Table 7.1 Maximum error in Y at the nodes

1/h R-K GMS Mix C-H MixII

0.1 I 10 0.31+0 -0.18-1 -0.24-3 0.79-3 0.37-1

20 0.11-1 0.75-4 -0.12-4 0.47-4 0.99-3
---------------------------------------------------

40 0.45-3 0.10-4 -0.74-6 0.29-5 0.16-3
-----------------------------------------------------

80 0.91-5 0.23-5 -0.46-7 0.18-6 0.33-4

0.01 1 100 1 0.21+0 -0.24-2 -0.19-4 0.56-3 -0.24-2 9
--- I..............................................------
200 0.75-2 0.65-5 -0.12-5 0.34-4 0.10-4
-------------------------------------------------------400 0.30-3 0.81-6 -0.76-7 0.21-5 0.17-5

-------------------------------------------------------
800 0.15-4 0.19-6 -0.47-8 0.13-6 0.34-6

I - -- ------------------ ----------------- -----------------
0.00111000 1 0.20+0 -0.12-3 -0.19-5 0.54-3 -0.12-3

Table 7.2 Maximum error in Y' at the nodes

1/h I R-K GMS MixI C-H MixII

0.1 10 I 0.34+1 -0.19+0 0.38-3 0.88-2 0.46+0
-----------------------------------------------------

20 I 0.12+0 0.83-3 -0.12-3 0.52-3 0.25-1

1 40 I 0.49-2 0.11-3 -0.80-5 0.32-4 0.73-2
-------.............................................

80 I 0.41-3 0.25-4 -0.50-6 0.20-5 0.28-2
I --------------------------------------------------------

0.01 1 100 I 0.21+2 -0.24+0 -0.19-2 0.57-1 -0.24+0
-------------------------------------------------------

200 I 0.75+0 0.66-3 -0.12-3 0.34-2 0.27-2
-------------------------------------------------------

1 400 1 0.31-1 0.82-4 -0.76-5 0.21-3 0.76-3
-I -- -- ----------------- ----------------- -----------------

800 0.16-2 0.19-4 -0.48-6 0.13-4 0.29-3
I - -- -- - - - - - - - - - - - - -- - - - - - - - - - - - -

0.00111000 1 0.19+3 -0.1'2'0 -0.19-2 0.54+0 -0.12+0

-

!.S
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Tablo 7.3 CPU TIME in seconds on a DEC 20.

E 1/h I R-K GMS MliI C-H MliII*

0.1 1 10 1 0.08 0.57 0.48 0.38 0.23

1 20 1 0.15 0.52 0.41 0.38 0.21
I- -- -I -- - - - - - - -- - - - - - - - -- - - - - - - -

1 40 1 0.28 0.64 0.54 0.62 0.37
I ------ I.........................................-----
1 80 I 0.55 1.15 0.93 1.12 0.66

0.01 1 100 1 1.83 6.6 5.63 6.20 2.62

*.I 2V 1 3.68 7.49 6.78 7.83 4.69-- -- -- ----- --- -- -- -- ----- --- ---- --- -- 1
1 400 1 7.30 12.98 11.48 13.96 7.92--------------------------------------------------
1 800 1 14.63 23.36 21.76 24.77 15.62

0.001 1000. 1 21.82 58.30 47.74 50.17 23.40

Table 7.4 ~. 1

I I R-K GMS MliI C-H MliI

1 0.1 1 0.31+0 -0.18-1 -0.24-3 0.79-3 0.37-1
S-------------------------------------------------------

Error I0.01 I 0.21+0 -0.24-2 -0.19-4 0.56-3 -0.24-2
-------------------------------------------------------

I0.0011 0.20+0 -123 0.95 0.54- -013
I .1 I .3.1 -0.19-0 -0.19-3 08-2 -0.16-0

I-----I........................................

*Er~f) I0.01 I 0.21+2 -0.24+0 -0.19-2 0.57-1 -0.24+0
-------------------------------------------------------

1 0.0011 0.19+3 -0.12+0 -0.19-2 0.154+0 -0.12+0

-- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -
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